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References [l, 21 investigated the unsteady two-dimensional flows of a 
polytroplc gas with rectilinear characteristics in the xl, x2, t space 
constant values of the velocity components ul, u2 and of the velocity of 
sound along straight lines. 

In [31 the determination of solutions of this type of flows when 
shock waves were present was investigated under the assumption that the 
motion behind the front of the wave is isentropic. The basic property of 
shock waves in the types of flow indicated is the constancy of their in- 
tensity for both isothermal and adiabatic gases. The form of the front 
of the shock wave may, generally speaking, be arbitrary. (The background 
on which a shock wave is propagating is assumed to be a stagnant POSY- 
tropic gas with nonvanishing density and pressure.) 

The remarks presented in this paper are the continuation of that work. 
Here the methods, derived in [31. are applied to the establishment of 
certain specific solutions of the equations of two-dimensional gas- 
dynamics. It should be noted that in [31 there is an error. In the ex- 
ample under investigation in [31, for shock waves acquiring at a given 
instant the form of an ellipse, it was stated erroneously that the local 
solution is valid in the region behind the wave, as the latter is pro- 
pagated along the uniform background. In reality the solution derived for 
the hyperbolic case defines some background disturbances in front of the 
shock wave, as it moves in such a manner that a stagnant region remains 
behind the wave. 

Section 1 of this paper treats the problems of finding solutions in 
the region between the curvilinear shock wave and its supporting curvi- 
linear giston, along which the pressure is constant in time. A general- 
ization of the well known “automodel” solution of Sedov is obtained for 
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the problem of the expansion of a cylindrical piston at constant velocitg 

into a gas [41. 

Section 2 investigates flows behind propagating curvilinear normal de- 

tonating waves; the solutions obtained are valid in a region behind the 

detonating wave which is bounded on one hand by the front of the detonat- 

ing wave, and on the other either by a weak discontinuity (similar to the 

case found in the one-dimensional automodel solution of Zel’dovich IIS]), 
or else by the limit line, which is the line of degeneration of the velo- 

city hodograph. The stability and the uniqueness of these solutions are 

not considered in this paper. 

The system of equations, which describes the types of flow under con- 

sideration, has the form (this system of equations is somewhat different 

from the one obtained in [31): 

r2 a+ E+(l-p) (T +r ag 1 =o 

(0.1) 

(0.2) 

(r - 1) 13 (V + 030 - tP) + r (r - 3) 8’2 + 4r = 0 

zi - Ait = ai (i = 1,2) 

where 0 is the velocity potential and y is the adiabatic index. 
2 

e=---- 
1-l E9 u1 = r cos cp, u2 = r sin cp 

(0.3) 

(0.4) 

0,” = alul + a2242 - 0, 
aao -- 
au, - al, Ea = a2 

For the total differential equation, (0.3) one specifies Cauchy prob- 

lem where 8, ’ and 8, are determined on the front of the shock wave from 

the Hugoniot conditions and the condition 

D=f 
WAI -I- uaAs 
~~ = const 

where D is the normal velocity of the front of a shock wave. 

(0.5) 

The front of the shock wave is given by the equation 

a2 = f (ad (0.6) 

where a1 and a2 are parameters which characterize the configuration of 

the linear characteristics in the x1z2t space. The initial conditions for 

Equation (0.2) are as follows 

a~ = cos cpf’ -I (-cot cp) + sin cpj [I’ -1 (-cotcp)] = 2 (cp) for r = uln (0.7) 

aa-Jo 
r- ar 

-UP=0 for r=Uln (0.8) 

where ul,, is the velocity of the gas in front of the wave, f '-' is the 
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inverse function of f’. After separation of variables in (0.2). assuming 
($0 = ~(9) x (r), we obtain for v and x 

$“+Q=U, raX” - r (Wa - 1) X’ + h @‘a - 1) x = 0. (0.9) 

where h is an arbitrary constant. Initial conditions for (0.9) must be 
chosen in accordance with (0.7) and (0.8). 

Notice that Equation (0.3) may be derived from the equations for 
cylindrical ‘automodel” motion if the process as a whole is adiabatic 

(see II41 1. 

1. The equation of the piston which supports the shock wave will be 
chosen in the form 

at4 = Q (al) (1.1) 

Solving the Hugoniot conditions in front of the shock wave, given by 

Equation (0.6), we obtain 

(7 + i) Da 
P = (r - 1) Da + 2r (i-2) 

where I ‘InI is the velocity modulus on the front of the wave. For the 
background in front of the wave. we assume p = p = 1, ul = u2 = 0. Choos- 
ing the plus sign in the Equation (0.5), we obtain the following initial 
conditions for function 6 

Cl=2 
T-1 J ---F 8’ r-;;. = (:_!“ibl, for r=a (1.3) 

In this manner function 6(r) is uniquely determined from Equation 
(0.3). if D and y are given. We note that Equation 
the neighborhood of the wave front. To be elliptic 
condition 1 - 8 ,2 > 0. From (1.2) and (1.3) we may 

(7 - 1) Da + 2’r 
e’a = r (20” -r + 1) 

and Or2 < 1 provided D2 > y, which is always valid 
velocity of sound in a stagnant gas. 

(0.2) is elliptic in 
it must satisfy the 
obtain 

(2.4) 

because \I (y) is the 

If the line a2 = a(al) is to represent the motion of a piston, it is 
necessary and sufficient that the condition 

D n = % (1.5) 

be satisfied, where D,, is the normal velocity of the piston and un is 
the projection of the velocity vector on the normal to the piston. Using 
(0.6) and (1. l), condition (1.5) may be written in the form 
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ati aal 
Tt --O’ z z-u1 ( ah aal 

z,-d a& 1 ( aat aal 
-US $&-d ays 1 (1.6) 

Applying the method which was used in [l, 21 to the analysis of the 
basic system, it is easily shown that Equation (1.6) is equivalent to two 
equations: 

ug-Aa+Q’(AI-u1)=0 (1.7) 

p21 t”l- Al) - dAa (us - An) - PII (US - AS) + o’er (ul - Al) = 0, 

aAi 
pij _ acr 

i 
(1.8) 

Further, using (0.1) we find that both Equations (1.7) and (1.8) are 

satisfied, if un # 0, provided 

8’ (r) = 0 (1.9) 

Hence it follows that Equation (0.3) together with the initial condi- 
tions (1.3) must be integrated in the direction of increasing r UP to the 
value r = d, such that 8’ becomes zero. 

Let us note in passing that we may investigate pistons without slip. 
In that case, in addition to condition (1.9). the following requirement 
must be imposed upon a0 

a@0 
rar -V=O for: r=d (1.10) 

This requirement together with the conditions in front of the shock 
wave leads to the following boundary value problem for the determination 

of the function xh( r) 

~XA’ (a) - xA (a) = 0, dxh’ (4 - XA (4 = 0 (1.11) 

In the considerations to follow we restrict ourselves to the investiga- 

tion of pistons with slip. 

Consider the case when the shock front is symmetrical with respect to 

both axes of a closed smooth figure. Since it is closed and symmetrical, 

it is necessary to assume A = (2m)2, A = 0, 1, 2, . . . or h = 1 in Equa- 

tions (0.9) (we shall assume the lines x1 = 0, x2 = 0 to be rough walls) 

Furthermore we consider a class o f problems for which the velocity 

potential in the plane of the hodograph has the form 

@j = wo (r) i- c2qb (v, + c4x2 (r) cos 2c$ c I 1 ‘,? ’ \.. .I 

This simplest example will serve to clarify the peculiarities that 

may arise in these types of flow with pistons and shock waves. 
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The term of the form czr~l(~) corresponds to a simple transformation 
of the origin of the coordinate system in the plane XI, x2 and it may be 
eliminated. From Equations (0.3) and (0.9) we have 

r--i @YJ 
r+T = cxo’ (r) (c = const) (1.13) 

This condition means, however, that in a0 the term of the form 
cIxo( r) corresponds to the motion in time. Therefore, it may also be 
eliminated. In this way, 0’ may be chosen in the form 

aP=b~(r)cos2cp (1.14) 

The form of the shock front will be chosen at t = 1. If we assume 
b = 0 and 0’ E 0 we have the known solution of Sedov [41 for the expansiou 
of a cylindrical piston at constant velocity from a point. 

The function xp( r) may be found, upon determining 8(r) (h = 4), by 
numerical integration of Equation (0.9) with the initial condition 

%a (4 = 0. %‘a (4 = i (i .15) 

which arises from condition (0.9). Upon determination of x2(r) and 8(r) 

the distribution of quantities in the x,, x,, t space is given by the 
following equations obtained from (0.4)- - 

z1 = 
( 
r + ‘+ W)t COB tp + b (co8 cp co9 29x4’ (r)+ 2 sin rp sin 2cp %+) 

2s = 
( 

r+Kf-?W tsinrp+b 
> 

XI (r) sincpcos2cp~p’(r)-2208qsin2q~ (1.16) 

where r = D corresponds to the shock front and r = d to the piston. Let 

(1.17) 

Using (1.16), we represent j(r, 9, t) in the form 

-.Qo’) - b ~0s 29 (- xi + 4~)I’~~~sin”2p(xp’-~)’ (1.18) 

From (1.18) it follows that for sufficiently small but fidite values 

of b for all r and 9 and t >, 1, the Jacobian J(r, 9, t) does not vanish. 

By the same token the solution in the region between the shock front and 

the piston, valid for t 3, 1, is fully determined. 

It should be noted that for t < 1 a solution J(.r, 9, t) # 0 cannot be 

guaranteed. Whereas in the solution of Sedov the piston begins to move 

from a point and at the initial instant the piston and the shock front 

are coincident, it is not permissible to retrace the course of the wave 
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and the piston “back” to the coincidence since for a certain t, J( r,qR t) 

vanishes. This situation is natural, since in the case of expansion of a 

cylindrical piston from a given radius other 

than zero a motion arises at the initial in- zz 

stant which in general 

’ c=rfl for aa = f (al) (2.2) 

In Equations (2.1) and (2.2) u1 denotes the 
n 

wave of the component of the velocity vector 

normal to the wave. 

Two possibilities arise from Equation (0.5) 

(1) D=- &-rk, k=-&D (2.3) 
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(k = r0 = const 

Behind the front of a normal propagating detonating wave, i.e. for the 
one-dimensional case the velocity drops t6 zero, while the pressure and 
the velocity of sound reach constant values. It is necessary, therefore, 

to consider the case of (2.4). because the sign of k characterizes an in- 

crease or decrease of the velocity of sound behind the front of the wave. 

In this case we have 

(2.5) 

This means that the front of the detonating wave satisfies Equation (0.2) 
for the parabolic case. In this way we have the following Cauchy problem 
for Equation (0.3) 

W’ -- e-p-1 * 8’ = a Y__ for r = r + i (2.6) 

It can be shown further that in the neighborhood of the front on the 
side of decreasing r the Equation (0.2) is of the hyperbolic type, i.e. 

(1 - 8’2) < 0. Indeed, we obtain from (0.3) 

3”: (r+ 1)” 
-T<0 for r=uin (2.7) 

By numerical integration of (0.3) for various y and D it can be shown 
that Equation (0.2) remains hyperbolic up to the line r = 0, which in the 
one-dimensional case is the line of a weak discontinuity. 

We shall investigate the asymptotic representation of the function 

1 - or2 in the neighborhood of the line r = 0 (see, for example, [71). 
Assuming that 8’ # 0 for r ‘U 0, we have from 0.3) 

re” - 8’ - 0” _ 0 (2.8) 
we obtain by integration 

8’2 - 1- BV’; (B = const > 0) (L9) 

In this way the first derivative 8’ is seen to be continuous at the 
transition through the line r = 0 and all higher derivatives become in- 
finite. On the line r = 0, we have OS2 - 1 = 0, hence this line also cor- 

responds to the parabolic case of equation (0.2). In certain cases it may 
indicate a weak discontinuity, behind which the gas is stagnant and has 
constant density and pressure, analogous to the one-dimensional problem 
investigated by Zel’ dovich. The one-dimensional solution for the 
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cylindrical case is obtained if we assume 0’ E 0. 

The potential O”, in general, is determined uniquely by conditions 
(0.7) and (0.8) but additional conditions are needed in order to select 
a desired solution. We shall show that for A # 0 and h # 1 the solutions 
of Equation (0.9) have a singularity at r = 0 and that x’~( r) are not 
bounded, so that in order to obtain solutions with a weak discontinuity, 
moving behind the detonating wave, it is necessary in general to con- 
struct a boundary value problem for the function xh. The function xh’(r) 
then must be bounded at zero. 

Using (2.9) we obtain from (0.9) for xl at r Q 0 equation 

(2.10) 

Let us introduce function M defined by the formula xA = r’hl. From 
(2.10) we obtain for M equation 

rPM” + (2Ar - Br*/e)M’-+I.(&-l)M=0 (2.11) 

At r * 0 we may consider instead of (2.11) the equation 

r~M”+2LrM’+h(I-l)M=O (2.12) 

Equation (2.12) is Euler’s equation. Looking for a solution in the 
form M - t-l, we obtain two possibilities for R: w1 = - h and m2 = -A + 1. 

Thus, the two linearly independent solutions of Equation (2.10) near 
zero have the form 

x(‘) = A(‘)r + 0 (r), A(‘) = const # 0 (2.13) 

p = AS) + 0 (I), A@) = const # 0 

But if Q,(O) # 0 a then it follows from (2.10) that xh’ is not bounded 
at zero. 

Thus; in order to obtain solutions valid in the region between the de- 
tonating wave and the weak discontinuity. which separates the region of 
disturbed motion from the stagnant gas, we must specify for the functions 
Q, which appear in the expression of the velocity potential in the hodo- 
graph plane 

ma = 2 ah*A (W) %a (r) (aA = const) 
h 

(2.14) 

the following boundary conditions 

Xa (0) = 07 UX’x (a) - x?. (a) = 0 (2.15) 
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When reducing Equation (0.9) for XA to the eelf-edjoint 

taln 

form, we ob- 

(P (4 X’a)l + hcl (4 xx = Q (2.16) 

where 
6---i P-i 
7 dr > 0, f (r) = 7 y dr) >O (2.17) 

a a 

The function p(r) is continuous at [O, al 8nd q(r) has a singularity 
only for r = 0 and q(o) = 0. Applying the methods of Chapter 6 of [sI 
for equations with singular points, we c8n derive the usual properties 
of systems of eigen values 8nd eigen functions 
problem (2.15). 

Further, in order to construct a particular 

in analogy to Section 1 

of the boundary value 

solution for o” we take, 

where A # 1 is the first efgen value of the boundary value problem 

for the Equation (0.9). With 8(r) and x1(r) known, the flow in the 
space q 8y be found from the equations 

(2.18) 

(2.15) 

x1=2 t 

xl= r+ %j+ 5W 
( > 

t co5 cp + b 
( 

xk (r) 
cos cp coslrKqq’X (r) + )/Xsin I+ sin VZq - 

1 

%a= 
( 

r+‘+W 
1. ( 

xl (r) (2.19) 
tsmcp+b sincpcos fiqq’x(r)-flcosqsin fl(p,- ) 

Equations (2.19) are the equation6 of motion of the front of the de- 
tonatlon for r = a, r + m’ (y - .I)/2 = D; the value r = 0 corresponds to 
the line of a weak discontinuity. Let WI fix the initial location of the 
front of detonation at t = 1. In this case, we cannot assert that the 
lines of the weak discontinuity and the detonating wave coincided at some 
instant t c 1. Similarly to the statements in Section 1 it is expected 
that, after the initiation of the detonating wave along some curvlline8r 
cylindrical surface, the flow at the Initial instant does not belong to 
the class of motions with linear components here considered. After some 

time, however, it will evolve into that type. 

If instead of stating the boundary problem for the function xl, we 
required that xh’ by bounded at zero, then we might by solving Equation 
(0.9) for the Cauchy problem xA’( a) = 1, xA( a) = a of A for arbitrary 
xh, obtain various flows behind the detonating wave. Their validity ex- 
tends only to some limit line along which the hodograph of velocities 
degenerates. These solutions evidently may be used after numerical inte- 

gration of some problems, in which case they are matched along the 
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singular line with the constructed solutions. 

Let us investigate further the behavior of jh(r, Q, t) in the region 

between the detonating wave and the line of weak discontinuity. From 

(1.18) we have for arbitrary 

J, (a, (P, 4 = 0 (2.20) 

Let us show that behind the front of the wave Jh > 0. Indeed for r = (I 

we obtain 

aJk f (T + II2 - =_-- 
ar D 

ay (Dt-b(k-1)cos I/xcp)z<O (2.21) 

Using the following relationships for r Q 0 

‘x1’,, - Br-l/a, 
XA 

xl,, - 7 - Nr+l;a, 
% 

- fA $ 1\ -p - K (B, N, K = con&) (2.22) 

for sufficiently small (but finite) B it may be shown that Jh( r, Q, t) > 0 

for r E CO, al, t 2 1 and arbitrary Q. It may be shown further that the 

obtained solutions may be considered also in the interval of time 

0 < t,, < t < 1, where at the instant t0 an intersection of the normals 

to the line of the weak discontinuity takes place and the discontinuity 

arises. 

Note also that there follows from (2.19) for r = 0 that the line of 

the weak discontinuity moves with constant normal velocity, equal to 

1/2(y - 1)8(O), namely with the local sound velocity. In conclusion, let 

us give a numerical example. 

Assume that p = Ap3 which is the most frequently used equation of 

state in the theory of detonation. Let D = 4 and-p = 0 in front of the 

detonation. 

Determination of the first eigen number by the method of Galerkin, 

yields A = 10.66. By numerical integration of (0.3) we find the function 

8(r) with the initial conditions 

0=3, 8’=1 for r=l (2.23) 

In this case, as shown by the calculation, 8’ > 1 in the interval 

(0.1). 

The velocity potential Go is chosen in the form 

W -1 0.01 xA (r) cos 3.269 (2.24) 

(for b = 0.01 the condition jh( r, Q, 2.14) > 0 is satisfied for all Q 

and r.E (0.1)). The lines 
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0, 
31 

x2 = xl= tan 2.3.26xl 

are considered to be rough walls. Figure 2 shows the location of the de- 
tonation wave (r = 1) the line of the weak discontinuity (; = 0) and the 
line r = 0.4 at the instant t = 2.14. 

As in Section 1, the form of the detonation wave and of the weak dis- 
continuity in the constructed example differs insignificantly from the 
circular form. The distances of the end points of the detonation wave 
and the weak discontinuity to the origin of the coordinate system are 
equal to 1.895 (on the line x2 = 0) and 1.845 for the detonating wave 
and 0.846 (on the line x2 = 0) and 0.905 for the points on the weak dis- 
cant inuity respectively. 
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